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Fractures in heterogeneous two-dimensional systems
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A two-dimensional triangular lattice with bond disorder is used as a testing ground for fracture behavior in
heterogeneous materials in strain-controlled conditions. Simulations are performed with two interaction poten-
tials (harmonic and Lennard-Jones typesd different breaking thresholds. We study the strain range where
the fracture progressively develops from the first to the last breakdown. Scaling properties with the lattice size
are investigated: no qualitative difference is found between the two interaction potentials. Clustering prop-
erties of the broken bonds are also studied by grouping them into disjoint sets of connected bonds. Finally, the
role of kinetic energy is analyzed by comparing overdamped with dissipationless dynamics.
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[. INTRODUCTION tical description of the final structure. While in the former
context it is obvious that one cannot disregard the specificity
Understanding fracture dynamics is important not only forof fractures in building meaningful dynamical models, in the
its practical applications but also because it represents a th&tter case, we have assisted in the development of models
oretical challenge to nonequilibrium statistical mechanicsonly indirectly connected to fractures in the hope of never-
The growing interest observed in recent years within thetheless capturing the key ingredients. One prominent ex-
physics community has a multifold origifi) the ubiquity of  ample is represented by the variety of papers devoted in the
fractal geometries in natural phenomena has representedpast to the breakdown of random fuse networks, often used
strong motivation for studying fracturdd]; (ii) the huge as a reference for fractur¢g].
improvements in computer performance have made possible However, in spite of increased interest, a systematic study
the execution of increasingly realistic simulatiortsi) the s still lacking and many properties have not yet been thor-
development of new experimental techniques has allowedughly investigated. The object of the present study is some-
accurate measurements over a wide range of sf2/@ls (iv) where between the two philosophies mentioned above. In-
the general expectation that statistical phenomena can be aspired by some recent experimental studies, where the
commodated in a few universality classes has stimulated theppearance of microcracks prior to the formation of the final
formulation and study of many simplified models. The majorbreakdown has been investigafe&d-11], here we study the
difficulties for a realistic numerical study arise from the progressive breakdown of a system.
many different spatialand temporalscales involved in frac- In order to keep the computer time within an affordable
ture dynamics, which range from the atomic scale to thgange and yet allow a reliable statistical analysis, we have
macroscopic level. In fact, in some numerical studies, the tiglecided to limit ourselves to studying a two-dimensional tri-
of the fracture is treated quantum mechanically, while arangular lattice with nearest-neighbor interactidi,13].
intermediate region around the fracture itself is studied byFor the mutual interactions, the so-called Born mddd] is
integrating Newton’s equatior(sith a suitable choice of the often chosen, as it is numerically convenient and also allows
interaction potentia) and, finally, the remaining part of the working in the simpler framework of square lattices, as the
medium is treated as a continuddl. Additional difficulties  corresponding Poisson modulus remains finite. Here, we
arise from the existence of a large variety of materials whicthave preferred to consider central forces since this is a more
can be(i) more or less heterogeneous, depending on the typgeneral choicdit reduces, under suitable approximatations,
and amount of defects, anld) either brittle or plastic, de- to the Born mode[14]) and allows study of non-negligible
pending on their response to the applied stfesd. Further-  deviations from equilibrium.
more, different types of fracture do exi$tere we shall con- With respect to the force field, we have considered both
sider open-mode or, equivalently, mode-I fractures, where &armonic and Lennard-JonésJ) types, as there is a quali-
traction is exerted on the boundaries, but two shear modeastive difference between them. In the latter case, beyond the
exist as well and, last but not least, either the strain or theinflection point of the potential, larger strains correspond to
stress can be controlled. decreasing stresses: this nonlinear effect is obviously lacking
The two main focus issues of fracture investigations arén the harmonic case.
evolution, once the fracture has been initiated, and the statis- As to the heterogeneity of the material, two different set-
ups are typically adopted. On the one hand, disorder is intro-
duced as a distribution of thresholds, i.e., of the distances
*Email address: politi@ino.it above which a bond is irreversibly broken, while the bond
"Email address: zei@ino.it strengths are assumed to be equal to one andtiesy, for
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instance, Refs[15-17). On the other hand, disorder is @ ® ® ®
sometimes introduced as a distribution of bond strengths

with the thresholds chosen equal to one anofh2rl3. The ® ° ° °
simplest such idealization is that of a dichotomic distribu-

tion, where each bond is either intact or cut from the very

beginning (following Ref. [18], the initially missing bonds ¢ Q\ /’ i

are defined as “cut,” while those that are removed during -y N/ \Y}
the fracturing process are defined as “brokgnAs pointed =~ <€— 0-——*——-0 ® —
out in Ref.[16], this second setup is not formally different FARN

from the first, since it can also be viewed as a dichotomic PY ¢ » PY

distribution in the thresholdg¢set equal to either O or the

same preassigned va)juén practice, however, almost all the

studies in the former context have been performed by assum- i i i g

ing that the support of the distribution of thresholds extends FiG. 1. Sketch of the triangular lattice. The dashed lines refer to

from O to finite values: this implies that bonds start to breakihe interactions involving a given site with its nearest neighbors.

already for infinitesimal strains, while in the latter context The left and right boundaries are pulled apart with veloaity

there exists a critical strain below which the medium de-Free boundary conditions are assumed along the upper and lower

forms reversibly with no crack. Here, we have preferred toborders.

adopt the second point of view as it appears more “realistic”

to us, although the various approximations introduced at difeators. In Sec. IV, we discuss the dynamics of an over-

ferent levels of description are so many that this becomedamped lattice, while Sec. V is mainly devoted to comparing

almost a subjective issue. the results for the LJ potential with those for harmonic
The very first question that we have investigated is thesprings. Finally, in Sec. VI we discuss and summarize the

behavior inside the strain range where microcracks are pramplications of our analysis.

gressively generated, finding that its width is independent of

the system size for both the harmonic spring and the LJ Il. MODEL

potential. This has been shown by monitoring both the stress

and the cumulative density of broken bonds. Next we have The model consists of a two-dimensional triangular lattice

looked at the distribution of broken bonds by classifyingWwith nearest-neighbor interactioisee Fig. 1 that break as

them into two groupsti) those belonging to the major clus- soon as the mutual distance becomes larger than a suitable

ter (composed of both broken and cut bontisat ultimately  threshold. In the bulk, the total force acting on a given atom

separates the lattice into two disconnected subsetsyignd is the sum of the contributions arising from the interaction

those belonging to “microscopic” clusters generated awaywith its six neighborgsee the dashed lines in Figl. 1

from the macroscopic fracturel9]. As a result, we find a More precisely, by denoting the position of th¢h

different scaling behavior for the two classes, which suggestsatom” by Fi , the forceﬂj due to the interaction with the

that in larger lattices the majority of bond breakdownsjth particle is written as

should occur out of the main crack.

Finally, we have studied the fracture scaling properties, _ o ;i_;,
by computing the “length” of the leading crack and of the fij =F(|ri—rj|)+—e', 1)
microcracks. The standard way to characterize a fracture is |ri_ri|

through the roughness exponehtwhich measures the scal- ) _

ing behavior of the transverse fluctuations of the fracturevhere|-| represents the modulus operation &fgl) is a

surface upon changing the longitudinal scale. An alternativécalar function defining the force law. Here, we have consid-

approach is based on the computation of the fractal dimergred both linearF(u)=—a(u—a) (harmonic casg and

sion D, which is connected t¢g by a simple relation that, in Lennard-Jones type forces,

two dimensions, reads a®=2¢. In particular, we have

tested the role of kinetic energy, by simulating an over- F(u)=a—a

damped lattice. As a result, we have found that in this case 6

the total number of broken bonds grows linearly with the

system size. This disappearance of fractal features indicateghere the parameters are fixed in such a wayuhaa is the

that the kinetic energy is very important in determining theequilibrium position in either cas@.e., a is the lattice spac-

scaling properties. It would be desirable to verify whethering at rest, and to guarantee that the quadratic term of the LJ

the same holds true in other setups, where, e.g., the fractuptential coincides with the harmonic potential. In order to

has been grown by redetermining the stationary state eaaxplicitly eliminate the irrelevant parameters, we suitably

time a single bond has been broken. rescale the spatial variable as well as the time axis: this al-
More specifically, the next section is devoted to introduc-lows getting rid of bothe anda, which will be fixed equal to

ing the model and some of the notations. The third section] for the rest of the papénotice that the masses can also be

the core of the paper, deals with a thorough investigation ofcaled out Accordingly, all the quantities studied in this

the harmonic potential, with the computation of several indi-paper are adimensional.
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The critical thresholda*, however, is a relevant param-
eter that cannot be scaled out. We have performed most of
our numerical investigations fa* =1.1, but some tests for
larger thresholdsg* =1.5,1.8) have been made as well. In
the case of the LJ potential, we have fixatl=1.8, above
the inflection point of the potential, in order to ensure a clear
qualitative difference from the harmonic case.

The pulling process is actuated horizontally, by symmetri-
cally shifting the leftmost and rightmost lattice sitéhose
connected by the solid thick lines in Fig) Wwith a velocity
+v. The velocity has been chosen small enough to guarantee
that the whole lattice remains nearly at equilibrium during
the initial elastic deformation. Simulations performed with
different velocities have allowed us to conclude that

FIG. 2. Different instances of fractures in a lattice with linear
JEppy ize L=80: (a) Lennard-Jones potential with 30% of initially cut
107" is slow enough, so that we have selected such a valu%onds;(b) harmonic potential, threshold equal to 1.1, 30% of cut

n aI_I our studies. . . bonds(simulation performed with no kinetic enerngyc) same as
Fixed boundary conditions have been imposed along the,) yth a different realization of the disorder and with kinetic en-

lateral borderd(i.e., we studied strain-controlled fractures ergy: (d) Lennard-Jones potential and 15% of cut bonds.
while free boundary conditions have been chosen along the _ _
upper and lower bordersee again Fig.)1 This is a simple All simulations have been performed Inx(L+1) lat-

way to reproduce the conditions imposed in some experilic€S; I-€., in media with aspect ratio close to 1. Before dis-
ments(see, for instancd20]) cussing the quantitative results in the next section, let us here

A local dissipation, i.e., a force term- ylﬂ, has been briefly illustrate the phenomenology that can be observed for

added along the left and right boundaries, where we expe(f ome realizations of the disorder and for different choices of

hat th i ith th | di foct e interaction. For relatively small strains, the bond lengths
that the coupling with the external world is more eftective In o main pelow the breaking threshold. The inhomogeneities

removing kinetic energy from the medium. Itis, in fact, nec- of this process are just determined by the initial distribution
essary to include some dissipation to prevent the transformayf cut bonds. Above some critical strain, microfractures arise
tion of potential energy into kinetic energy due to the pro-in different regions of the lattice until the whole lattice is
gressive bond breaking leading to an unrealistic amount ofeparated into at least two disconnected pieces by a macro-
kinetic energy traveling all over the lattice. This is a similar scopic fracture. A typical example is reported in Figa)2
choice to that made when performing numerical simulationgvhere a rough fracture is clearly visible together with some
of heat conductivity in lattice systems, where the only atomssmall holes corresponding either to isolated microfractures or
coupled with the heat baths are those on the oppositivéo initial clusters of missing bonds. The final structure can,
boundarieg21]. The only exception to this setup has beenhowever, be more complex, as illustrated in the other panels.
made in Sec. IV where, in order to test the role of kinetic/n Fig. 2b), the generation of almost macroscopic holes has
energy, we added a dissipation term on all sites. accompa_\nied the onset of the main fracture. In F{g),:bn_e
The equations of motion have been integrated by using §2" S€€ mstea(_JI that the fracture initially followed two q|ﬁ_er-
leapfrog algorithm that allows preserving the Hamiltonian€Nt routes which eventually connect after some twisting.
structure in the bulk and easily adding the dissipation wher-SucrI‘ a phe”%”.‘e”FQ“ 'g brc;}ught to a? ﬁxtremumhm the ex-
ever required. The time step has been fixed equal t¢.10 ?mﬁ ebreporte 'g '9-( )tV\II e(rje onte oft ett_vvlo pat IS e\_/ertlr—]
The last important ingredient of the model is the disorder ually becomes cominant, leading to a partial overiap In e

We h h i K with two t f bond: intact top right region. We can, in a sense, state that the stressless
€ have chosen 1o work with two types of bond: Intact 0Nes,oiations allowed by the model make it good for reproducing
characterized by the same spring constantl and cut ones

! ! ! o the behavior of nearly two-dimensional objects embedded in
characterized byr=0. Accordingly, the fractiorc of ini- 5 three-dimensional space like sheets of paper. It is also clear
tially missing bonds represents an indicator of disorder. FOghat these strong deformations, which are responsible for the
c=0 we have a perfectly homogeneous lattice. It is wellfinal ductile behavior, make the system rather different from
known that c=c,=0.65(3) is the ordinary percolation a random fuse network, where only the connectivity is im-
threshold, i.e., forc>c, there are so many missing bonds portant. Moreover, we want to remark that, occasionally,
that the lattice is no longer macroscopically conne¢®2.  small fragmentgcomposed of a few particlesletach, rap-
Moreover, in the case of central forces, there is a secongdily flying away, very much in analogy to what happens
threshold, the so-called rigidity-percolation threshole, ( when, e.g., a glass breaks in real life. This represents the first
=0.3398[23]) above which the lattice, although connected,qualitative indication of the relevance of kinetic energy in
has zero Young modulus. the whole process.

Preliminary numerical studies performed to test the cor-
rectness of our algorithms and the reliability of the model ll. HARMONIC CASE
have revealed, e.g., that the propagation of fractures is cor-
rectly described with the onset of the typical velocity insta- In this section we extensively discuss the fracturing pro-
bilities [24]. cess for the harmonic potential with the threshold set equal
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0.02

the lattice sizel. In order to establish the scaling behavior
within what we call the fracture range, we introduce the
variable

A=(d—dy)L, (4)

0.01+
which is basically the unscaled straidl() shifted by an
amount proportional to the system size. The best data col-
lapse was obtained faf,=0.0368(see the inset in Fig.)3

Its relatively low quality is due to both the large statistical
fluctuations and the existence of finite-size corrections. In
fact, on the one hand, the maximum statistical errowois

FIG. 3. Stress-strain curve in lattices of different dimension withequal to 1.5¢107°, 8x 10~ %, 5X 104, and 3< 10" * for L
harmonic potential, threshold equal to 1.1, and 30% of cut bonds= 10, 20, 40, and 80, respectively; on the other hand, one
The long-dashed, dashed, dotted, and solid lines refert@0, 20,  can see that the position of the maximum stress progressively
40, and 80, respectively. In the inset, we report the same curveshifts to the left, testifying to the non-negligible role of the
versusA, the unscaled strain after a suitable sfste Eq(4) with  finite sizeL. In any case, although a clear-cut conclusion
d.=0.0364. cannot be drawn, the approximate data collapse suggests that

the size of the fracture range is asymptotically independent
toa* =1.1 and for a fraction of broken bonds=0.3 close to  of L.
but definitely below the rigidity-percolation threshold. We  In order to gain some further insight into the fracture pro-
start from the stress-strain curves. The stiess defined as  cess, we have looked at the dependence of the number of

the horizontalx) component of the force per unit length, ~ broken bond$\(d) on the strain. Again, by considerinas
the independent variabl@s it is indeed so in the numerical

1 experimeny, we have averaged the fraction of broken bonds
o=1 > |fi(jx)|, 3y  forfixedd,

0

N(d)
Np

n(d)= ©)

where the sum extends to all bonds along one of the two
edges where the stress is applied.

In Fig. 3 we report the stress averaged over 100 differenfN,, is the final number of broken bonds in a given realiza-
realizations of the disorder as a function of the strein tion), over the different realizations of the disorder, obtaining
=D/L (whereD=ut is the overall stretchfor different lat-  (n). Notice thatn is nothing but the cumulative distribution
tice sizes [ =10, 20, 40, and 80 We have verified that the of broken bonds, i.e., the integral of the probability density
differences between the forces applied on the left and righ®@(A) of broken bonds. The resulting behavior is reported in
sides are much smaller than the statistical deviations stilFig. 4, again as a function o (only the fracture range
observable after the averaging process. matters in this cage Except for the curve corresponding to

The small-strain region is characterized by a nice scalinghe smallest sizel(=10), there is a reasonably good data
behavior: all curves perfectly overlap along a line that devi-collapse: in fact, the deviations among the various curves are
ates significantly from a straight line behavior. In this strainof the same order as the statistical uncertainty, which is ap-
range, the statistical uncertainty is rather sm#bs than proximately 2—3 %. These results confirm in a more con-
10~ * for all size. The nonlinear behavior of the load curve vincing way that the strain range over which the whole frac-
follows from the combined choice @f) a largec value close ture develops is independent of the system size. No
to the rigidity-percolation threshold, so that the entire latticesignificant difference is found if the fraction of broken bonds
has to be quite stretched before the microscopic strains oveis fixed and the corresponding strain is averaged over the
come the preassigned threshold dinga not-too-small criti-  disorder realizations.
cal elongation(0.1, compared, for instance, with the value At this point, it is interesting to compare our findings with
chosen in Ref[13], a* —1=10*%). The two circumstances the previous knowledge on this type of systems. In particu-
combine to determine sizable lattice deformations which, idar, in Ref.[13], the behavior of the critical stress value
turn, contribute to stronger nonlinear effects. It is interestingfor the breakdown of the first bond was extensively studied.
to notice that we are not so close to the percolation threshol@the authors convincingly conjectured that;=(a
as to be affected by finite-size corrections associated with the-bInL)™" with 0.5<»<1. This result can be understood on
phase transition. the basis of the following simple observation: the typical size

The overlap appears to end at a critical strdinsee the  of the longest microcracidue to the initial disorderthat can
vertical line in Fig. 3, above which the onset of microcracks be found in a lattice of sizé increases(logarithmically)
leads to a rearrangement of the lattice to withstand the imwith L. In particular, this is true for cuts perpendicular to the
posed strain and, eventually, gives rise to a decrease of ttstress direction. The longer are such cuts, the more fragile is
stress. This second regime characterized by the developmetfieir tip. Accordingly, it is natural to expect that the minimal
of the fracture becomes shorter and shorter upon increasirgiress to break the first bond decreases with incredsing
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FIG. 4. Average number of broken bonds normalized to the final  FIG- 5. Tail of the cumulative probability distribution of broken
number N,, (i.e., cumulative probability distribution of broken bonds forL=80. The dotted line refers to the average fraction of

bonds as a function ofA for the same physical setup as in Fig. 3. broken bonds for fixedd, while the dashed line is obtained by
Dot-dashed, dashed, dotted, and solid lines refdr+dl0, 20, 40, averaging the strains that correspond to the same fraction of broken
and 80, respectively. bonds. Finally, the solid line with slope 0.3 represents the result of

an exponential best fit. The large sample-to-sample fluctuations af-

We have tested this behavior in our simulations too. Asfecting the final stage of the fracture prevent a meaningful estimate
sample-to-sample fluctuations of the strain turn out to beof the statistical error.
smaller than stress fluctuations, we have preferred to look at
the behavior of the critical value af; (the nonperfect linear to clarify this point we decided to look more carefully at the
relationship linkingd anda is not a problem in regard to the spatial arrangement of the broken bonds. In Fig) Tve
scaling behavior, since the linear term remains predomjnantreport all broken bonds corresponding to the fracture process
By plotting 14; versus Ir_, we find that the scaling law depicted in Fig. £a), indicating their spatial positions in the
proposed in Ref[13] holds true for this fairly large value  undeformed lattice. There, one can certainly see a large con-
also (the largest concentration of missing bonds consideregentration of broken bonds around the region where the mac-
in Ref. [13] was c=0.2). Additionally, the exponent is roscopic fracture is eventually generated, but microcracks are
more likely close to 1 than to 0.5. The above results can thudistributed all over the lattice. We found it natural to group
be interpreted by stating that the critical stréor, equiva- together cut and broken bonds into disjoint clusters of mutu-
lently, stresy for observing a finite fraction of bond break- ally connected bonds. The cluster ensemble obviously in-
ings appears to remain finite even in the infinitelimit, cludes the major crack connecting the opposite edges of the
while the critical strain value for observing the first break lattice, together with a set of more or less microscopic clus-
goes to zero. Altogether, the decrease of the critical straitters (the so-called precursgrsThe shape of the maximal
with increasingL manifests itself as a tail in the underlying cluster, including the cut bonds, is reported in Fi¢o)7or
probability distributionQ(A) that extends to negativk val-  the same realization of disorder as in Figa)7
ues and, in principle, te-o for L—o. Altogether,N;, is much smaller than the numbi, of cut

A similar phenomenon is observed for larfyevalues, i.e., bonds. This is not simply the consequence of our choice of a
corresponding to the final breakdown of the lattice. In this
case, as the tail is much better pronounced, we can attempt a 10° T T T
quantitative study. In Fig. 5 we report-1{n) versusA to :
investigate the convergence properties of the probability dis- N[
tribution. The dotted and dashed lines are the results of the 9
avergage oh for fixed d and vice versa. We cannot say if the
strong deviations observed for largeare real and reflect the
sparse character of the last bond breakings, or if they are just
due to a lack of statistics. In any case, with reference to the 10'F
first curve, the solid line obtained with a best fit suggests the i
existence of an exponential tail. [

Another interesting problem to be studied is the depen- o
dence of the total number of broken bondg(L) on the 10 16 32 64
lattice size, with the aim of characterizing the possible fractal L

nature of the process. The data reported in Figsee full FIG. 6. Scaling behavior of the number of broken bonds for the

circles reveal a rather clean power lah,=L". A best fit  harmonic potential with threshold equal to 1.1 and 30% of cut

yields f=1.35+0.03. Considering that a macroscopic frac- ponds. Full circles refer to the average total number of broken

ture cannot be shorter than a straight ligemust be larger bonds; open circles refer to the broken bonds belonging to the lead-
than or equal to 1. It is important to understand whether théng cluster; diamonds refer to the broken bonds out of the leading
difference from 1 is to be attributed to the fractal structure ofcluster; crosses refer to the total number of broken bonds in the
the main crack or to the distribution of microcracks. In orderabsence of kinetic energy.
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FIG. 7. Bonds broken during the fracture process with the same 3
realization of disorder considered in Fig@® In (a), all broken 1077 """ —_ ‘S‘ Joo
bonds are reported with reference to the undeformed latticgn))n
the whole leading cluster is reported, including broken and cut FIG. 8. Probability distribution of the cluster sizes of broken
bonds. bonds in the harmonic potential for different lattice sizes, rescaled

to the same maximum valugolid lines. The dashed lines repre-
sent the distributions that would be obtained by randomly adding

relatively largec, 1b3lét rat_her of th? scaling behavior Nb' broken bonds to the cut ones. The slope of the straight line is equal
which grows ad_*=°, while N.~L“ for any c value strictly 5 _o 3

larger than 0. However, althougH, is, for largelL, negli-

gible in comparison td\., the same appears not to be true percolation[25]. The distributions fol. = 10, 20, 40, and 80
within the maximal cluster: there, we found that the fractiongre yeported in Fig. 8 as solid lines: they are rescaled to start
of broken bonds remains finite far— . This is not surpris-  from the same valu®(1). The nice overlap indicates that
ing, because, even though the fracture developed along gQe reason for the exponent 1.5 in the growth ratelt is
optimal path characterized by the maximal fraction of cuty \,mogeneous increase in the number of clusters of all
bonds, such a fraction must be strictly smaller than 1, as long;, o5 Over the accessible rangesofalues, the cluster-size
asc remains below the percolation threshold, as here. In factyisiribution approximately follows a powér law with an ex-
in the present case, the fraction of bonds that are brokeBOnent equal to-2.3+0.1 (see the solid line in Fig.)8

rather than cut in the maximal cluster is not smaller than Finally, for the sake of comparison, we have investigated
10%. . . . . ._the difference from the simple case of a random cancellation

It is now instructive to separately investigate the scalingy 5, equal number of bonds in addition to the cut bonds.
behavior of the n”mbemg) and Nf? of broken bonds in- - The gistributions obtained with this procedure correspond to
side and outside the maximal cluster, respectively. In Fig. 6ine dashed lines in Fig. 8. The slower decay of this second
one can see that{ scales approximately in the same way group of curves(the slope is close to-2) is apparently
as N, (see the open circles, whose best fit yiefis 1.31  counterintuitive: the bonds broken during the fracturing pro-
*0.03), but this is an almost obvious consequence of theess are less clustered than those in the purely random pro-
fact thatN{’>N{" (see the diamonds for the scaling behav-cess. In other words, it turns out that, once a bond is broken
ior of NLO)). More interesting is the growth rate exhibited by in a given cluster, it is less likely, rather than more likely,
this latter class of bonds, which is definitely large8, that further bonds will be broken in the same cluster. In fact,
=1.52+0.06. This result implies that, if the scaling behavior because of correlations in the local stress, small clusters
remains unchanged in yet larger lattices, the majority of brogrow by very little amounts, while only the leading cluster,
ken bonds will be eventually found out of the main cluster. the Griffith’s crack, reaches the macroscopic scale.

It is thus important to understand how the broken bonds As a further test, one could compare these results with the
are distributed out of the main cluster. In particular, wescreened percolation mod&@6], in which case the randomly
would like to ascertain whether thdit® growth is due to an  broken bonds are removed only from the backbone. How-
increasing number of clusters, or to an increasing siz@of ever, no sizable differences can be expected in the regime
subset of clusters. This can be clarified by looking at the that we have investigated, i.e., far from the percolation
probability distribution of cluster sizes. However, in order to threshold.
perform a clean analysis, we have to get rid of the back-

gro_un_d composed of the cut bonds, which represent _the vast IV. ROLE OF THE KINETIC ENERGY
majority of bonds belonging to the clusters. We decided to
proceed as follows. For any given clustatentified as such In the previous section we extensively discussed some

by simultaneously considering cut and broken bonds  fracture properties in a given physical setup. We now start
count the numbes of broken bonds and define it as the investigating the importance of some of the underlying as-
cluster size. By then counting the number of clusters of dif-sumptions. In this section we discuss the role of kinetic en-
ferent sizes over all realizations of disorder, we are in theergy in determining the scaling properties of the broken
position to compute the probability densRys). One should bonds. In the past, while Newton’s equations have been ex-
notice that this is different from the standard procedure usutensively used to simulate the propagation of fractures and to
ally adopted in the study of cluster distribution in randomstudy the various instabilities occurring therein, they have
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been less frequently employed in studying statistical properwas observed. This is consistent with our findings, as the
ties of fractures. dynamical rule was based on(jpotentia) energy minimiza-
Many paperssee, e.g., Ref16]) have dealt with models tion.
with a random distribution of thresholds, proposed as a natu-
ral extension of random fuse networks. By interpreting them
as mesoscopic models, the role of dynamics has been re- Besides the extensive studies performed der0.3, we
duced to guaranteeing an exponential convergence towaithve made some tests for a smaller density of cut boads (
the instantaneous equilibrium configuration for the imposed=0.15), finding: stronger finite-size corrections, larger statis-
(slowly varying boundary conditions and the given set of tical fluctuations, and a smaller breaking range. The larger
mutual connections. A nontrivial evolution arises becausefluctuations are due to the smaller absolute number of cut
upon increasing either the stress or the strain, some loc&onds. Since, qualitatively speaking, we have not found sig-
strains progressively overcome the allowed thresholds, thudificant differences, we have preferred to concentrate our

imposing a continuous reequilibration of the system until theefforts on the study of a single density of defects that could
final breakdown is established. presumably allow more reliable results. For all the above

In some other cases, intrinsic and extrinsic fluctuationd€2S0ns, the larger density=0.3 was found to be more con-

have been included through the introduction of a stochasti¥€Nient. o .
rule [27—30: in analogy to numerical studies of diffusion- The only quantitative analysis we attempted for smatler

- : . concerns the scaling behaviorigf , for which we found &3
limited aggregation, where particles are randomly added t(\é?lue approximately equal to 1.27, i.e., smaller than in the
l

the growing cluster, there, bonds have been randomly addg evious case. This result is not suprising, as it is known that

to ;cmt;]mtlal cractk W'T atsuLt]abIetr;]) ro(;)_ab.lhtyt.dlsmbuttpn. Iupon reducing the number of defects the fracture process
n the present context, where the dissipation is acting only,. .o mes more localized.

along the boundaries, it is not at all unlikely that the potential  Apother parameter that we have modified is the threshold.
energy released from the breakdown of a given bond aIIow\gpon increasing it from 1.1 to 1.6.e., by increasing the
breaking further bonds, upon transforming itself into Kinetic cyitical displacement by a factor of 5we find that the criti-
energy. It is much less obvious whether the number of brogg| strain passed from 0.0368 to 0.15, a value “only” four
ken bonds either increases or decreases. Indeed, on the dfifies larger: this is an indirect confirmation that nonlinear
hand, we can predict that the kinetic energy facilitates theffects due to the lattice deformation are not negligible. Also
bond breaking along the leading crack, thereby reducing thehe threshold changes yield to larger finite-size effects, which
stress on the bonds away from the critical region. If this isinduced us to prefer the value 1.1 considered in the previous
the scenario, the overall number of broken bonds should disections.
minish. On the other hand, kinetic energy, transported Finally, we replaced the harmonic potential with the more
through the lattice, might contribute to breaking all bondsrealistic nonlinear LJ potential. It is obvious that if the
that are nearly at threshold. threshold distance is chosen too small we are back to the
In order to find the true scenario, we have added a strongarmonic case, as the nonlinearity plays no role. For this
dissipation on each lattice site. The average nunthagain  reason, the threshold has been set equal to a larger value,
more than 100 different realizations of disordef broken namely, d=1.8, above the inflection point, in the range
bonds is reported in Fig. Gee the crossg$or the samel. ~ where an increase of the deformation reduces the stress. The
values as before. There, one can see that both of the abowmeost detailed analysis was again performed der0.3 in
hypothesized mechanisms occur, since for snhalN, is  order to allow a meaningful comparison with the previous
larger than in the previous case, while the opposite is true fostudies. The scenario emerging from Fig. 9, where the stress-
large L values. Altogether, this implies tha\,, increases strain curves are reported, is very reminiscent of that ob-
more slowly in the case of an overdamped motion. A best fiserved in Fig. 3. A surprising difference is that the initial
of the data in Fig. 6 yields an exponeBt=1.04+0.05. behavior is more linear in this case than in the previous one.
Within our accuracy, the growth is thus indistinguishableThis is presumably due to a partial cancellation of the non-
from a linear behaviofi.e., no fractality in the fracture pro- linear effects following from the lattice deformation with
ces$. While this is a clear indication that in the present con-those due to the interaction rule.
text kinetic energy plays a crucial role in determining the In spite of the larger threshold, the critical stress value is
scaling behavior of broken bonds, we should mention that irsmaller than in the harmonic case. This is because the effect
models with a random distribution of thresholds, fractalof the larger threshold is overcompensated by the stress re-
cracks are obtained even in the presence of overdamped dgiuction above the inflection point of the potential. On the
namics[16,28. This, however, does not exclude the possi-other hand, the critical displacemem.& 0.0318) is close to
bility that even in such conditions different fractal dimen- the value found with harmonic springs. Moreover, the inset
sions might be obtained upon including the effect of kineticof Fig. 9 reveals a good overlap of the strain curves plotted
energy. versusA (in this case, the statistical uncertainty is approxi-
Finally, let us comment on another element of agreemenmately 103, 5x10 4, 3x10 %, and 210 * for L=10,
with previous studies. In Ref15], it was found that, when- 20, 40, and 80, respectivelyith the major exception of the
ever the distribution of thresholds was limited to a range ofdata for the smallest lattice size € 10). Therefore, the frac-
strictly positive values, nonfractal behavior for the fractureture range again appears to remain finite in the thermody-

V. FURTHER TESTS
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FIG. 9. Stress-strain curves reported as in Fig. 3, with reference F|G. 11. Tail of the integrated probability distribution of broken
to the Lennard-Jones potential. The critical strain heredis  bonds forL = 80: the dotted curve refers to the average fraction for
=0.0318. fixed strain, while the dashed line refers to the average strain for
fixed fraction of broken bonds. The slope of the straight line result-
ing from a power-law best fit is equal to 1.8. As for Fig. 5, we are

namic limit. This is completely confirmed by the plot in Fig. ' == _ o
Hnable to provide convincing estimates of the statistical error.

10 of the integrated density of broken bonds, where one cal
again see a good overlap of the curves correspondirig to
=20, 40, and 8(in this case, the statistical error is slightly are suggestive of a continous dependencg e c but are
larger than before, being approximately of the order of 3—4also compatible with different finite-size corrections.

%). The only region where the overlap is not equally good is
the interval of negativél’s, i.e., the initial part of the frac-
ture. In the absence of theoretical arguments, we cannot de-
cide whether this is due to larger finite-size corrections or to |n this paper we have investigated several aspects of the
a cross over toward a different regime. In either case, sucbnset of fractures in a two-dimensional model of a heteroge-
deviations do not contradict the hypothesis of a finite fractureneous material in strain-controlled conditions. One of the
range forL—oo but might rather suggest the opposite. questions that we considered concerns the probability distri-

The only apparently relevant difference that we havebution of broken bonds as a function of the applied strain.
found from the harmonic potential concerns the tail of thewe found evidence that both in harmonic springs and in the
probability distributionQ(A). From the data reported in Fig. Lennard-Jones potential the probability distributiQ{A)

11, a power law seems to be more appropriate for describingonverges toward a smooth function for a suitable choice of
the asymptotic behavior &@(A). The power law means that the critical valued, [see Eq(4)]. We find thatQ(A) devel-
larger strains can be sustained by the lattice before its finalps an infinite tail on both the left and right sides. The left
breakdown. This qualitative difference is likely to be attrib- tail arises because the global strain corresponding to the first
utable to the above mentioned nonlinear behavior of the Lbreakdown grows more slowly than linearly with the lattice
force field. size L [13]. Conversely, the right tail signals a faster-than-

Finally, the growth rate8 of Ny, is slightly smaller than linear growth of the strain corresponding to the final break-
for harmonic springsg=1.27-0.03, and the same is true down. It is now highly desirable to develop even approxi-
for the growth rate ONE,O)(,B= 1.44+0.04). Such differences mate but analytical arguments to establish the shape of
Q(4).

As a further subject, we looked at the scaling behavior of
the number of broken bonds, by grouping them into disjoint
clusters. As a result, we found that, besides the major cluster,
there exists an ensemble of microcracks that contains a small
fraction of the overall number of broken bonds but, never-
theless, exhibits a faster growth rate. On the basis of our
simulations, we predict that in sufficiently large lattices the
opposite should be true, i.e., the majority of broken bonds
should, in the thermodynamic limit, be found out of the ma-
jor crack. It would be nice to see whether some crossover
toward a different regime comes into play in larger lattices.
I Finally, we want to comment on the fractal character ex-

A hibited by the major cluster. Various experimental studies

FIG. 10. The integrated probability distribution of broken bonds Performed in the last decade on different types of material
reported as in Fig. 5, with reference to the Lennard-Jones potentidlave revealed the existence of two scaling regip3gsover
and with the same value of the critical straip adopted in the ~small length scaleg~0.5 (i.e., D=1.5) while over some-
previous figure. what larger scaleg~0.8 (D=1.2). These two regimes

VI. DISCUSSION AND SUMMARY
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seem to correspond to two different processes: the creatigmonent experimentally measured to characterize the fracture
of distributed small areas of damage and the subsequendughness over microscopic length scales. In this case, there
growth of the fracture path through the connection of suchis even an almost quantitative agreement, as we find 1.52 and

areas in a self-determined region of the sample. Additionally] .44 (in the harmonic and LJ potentials, respectiyetp be
the crossover between the two regimes appears to be coBompared with the experimental 1.5.

nected with the existence of different fracture velocities. Our \we can thus conclude that the model discussed in this

results qualitatively confirm such a scgnario. In_ fact, cﬁo_r paper appears to be sufficiently accurate to capture some of
=0.3, the growth ratg of broken bonds in the main crack is the relevant features that have been observed in fractures of
1.31 and 1.27 in the harmonic and LJ potentials, respecrea| systems. It is now compelling both to modify the setup
tively. Such values are slightly larger than the fractal dimen+g ajlow further quantitative testsee, for instance, the sta-
sion expected from the experimental resuls<1.2), but tjstical analysis performed in Refl11] in the context of

the difference can very well be attributed to finite-size Cor‘stress_controned rather than strain-controlled fracwm

rections. Indeed, upon decreasiogsmaller 8 values were  to start developing even approximate analytical arguments to
observed and it is altogether unlikely that the dimendibn pyt our results on firmer ground.

depends continuously on the concentration of defects. Again,
simulations with larger lattices could help in clarifying this
point, but, more than that, theoretical insight is needed to
make further progress.

Furthermore, it is very tempting to compare the growth We thank S. Ciliberto, S. Ruffo, and E. Bouchaud for
rate of the microcracks out of the main cluster with the ex-fruitful discussions.
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