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Fractures in heterogeneous two-dimensional systems
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A two-dimensional triangular lattice with bond disorder is used as a testing ground for fracture behavior in
heterogeneous materials in strain-controlled conditions. Simulations are performed with two interaction poten-
tials ~harmonic and Lennard-Jones types! and different breaking thresholds. We study the strain range where
the fracture progressively develops from the first to the last breakdown. Scaling properties with the lattice size
are investigated: no qualitative difference is found between the two interaction potentials. Clustering prop-
erties of the broken bonds are also studied by grouping them into disjoint sets of connected bonds. Finally, the
role of kinetic energy is analyzed by comparing overdamped with dissipationless dynamics.
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I. INTRODUCTION

Understanding fracture dynamics is important not only
its practical applications but also because it represents a
oretical challenge to nonequilibrium statistical mechani
The growing interest observed in recent years within
physics community has a multifold origin:~i! the ubiquity of
fractal geometries in natural phenomena has represent
strong motivation for studying fractures@1#; ~ii ! the huge
improvements in computer performance have made poss
the execution of increasingly realistic simulations;~iii ! the
development of new experimental techniques has allow
accurate measurements over a wide range of scales@2,3#; ~iv!
the general expectation that statistical phenomena can b
commodated in a few universality classes has stimulated
formulation and study of many simplified models. The ma
difficulties for a realistic numerical study arise from th
many different spatial~and temporal! scales involved in frac-
ture dynamics, which range from the atomic scale to
macroscopic level. In fact, in some numerical studies, the
of the fracture is treated quantum mechanically, while
intermediate region around the fracture itself is studied
integrating Newton’s equations~with a suitable choice of the
interaction potential!, and, finally, the remaining part of th
medium is treated as a continuum@4#. Additional difficulties
arise from the existence of a large variety of materials wh
can be~i! more or less heterogeneous, depending on the
and amount of defects, and~ii ! either brittle or plastic, de-
pending on their response to the applied stress@5,6#. Further-
more, different types of fracture do exist~here we shall con-
sider open-mode or, equivalently, mode-I fractures, wher
traction is exerted on the boundaries, but two shear mo
exist as well! and, last but not least, either the strain or t
stress can be controlled.

The two main focus issues of fracture investigations
evolution, once the fracture has been initiated, and the st
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tical description of the final structure. While in the form
context it is obvious that one cannot disregard the specifi
of fractures in building meaningful dynamical models, in t
latter case, we have assisted in the development of mo
only indirectly connected to fractures in the hope of nev
theless capturing the key ingredients. One prominent
ample is represented by the variety of papers devoted in
past to the breakdown of random fuse networks, often u
as a reference for fractures@7#.

However, in spite of increased interest, a systematic st
is still lacking and many properties have not yet been th
oughly investigated. The object of the present study is so
where between the two philosophies mentioned above.
spired by some recent experimental studies, where
appearance of microcracks prior to the formation of the fi
breakdown has been investigated@8–11#, here we study the
progressive breakdown of a system.

In order to keep the computer time within an affordab
range and yet allow a reliable statistical analysis, we h
decided to limit ourselves to studying a two-dimensional
angular lattice with nearest-neighbor interactions@12,13#.
For the mutual interactions, the so-called Born model@14# is
often chosen, as it is numerically convenient and also allo
working in the simpler framework of square lattices, as t
corresponding Poisson modulus remains finite. Here,
have preferred to consider central forces since this is a m
general choice~it reduces, under suitable approximatation
to the Born model@14#! and allows study of non-negligible
deviations from equilibrium.

With respect to the force field, we have considered b
harmonic and Lennard-Jones~LJ! types, as there is a quali
tative difference between them. In the latter case, beyond
inflection point of the potential, larger strains correspond
decreasing stresses: this nonlinear effect is obviously lack
in the harmonic case.

As to the heterogeneity of the material, two different s
ups are typically adopted. On the one hand, disorder is in
duced as a distribution of thresholds, i.e., of the distan
above which a bond is irreversibly broken, while the bo
strengths are assumed to be equal to one another~see, for
©2001 The American Physical Society07-1
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ANTONIO POLITI AND MARIA ZEI PHYSICAL REVIEW E 63 056107
instance, Refs.@15–17#!. On the other hand, disorder
sometimes introduced as a distribution of bond streng
with the thresholds chosen equal to one another@12,13#. The
simplest such idealization is that of a dichotomic distrib
tion, where each bond is either intact or cut from the ve
beginning~following Ref. @18#, the initially missing bonds
are defined as ‘‘cut,’’ while those that are removed duri
the fracturing process are defined as ‘‘broken’’!. As pointed
out in Ref. @16#, this second setup is not formally differen
from the first, since it can also be viewed as a dichotom
distribution in the thresholds~set equal to either 0 or th
same preassigned value!. In practice, however, almost all th
studies in the former context have been performed by ass
ing that the support of the distribution of thresholds exten
from 0 to finite values: this implies that bonds start to bre
already for infinitesimal strains, while in the latter conte
there exists a critical strain below which the medium d
forms reversibly with no crack. Here, we have preferred
adopt the second point of view as it appears more ‘‘realist
to us, although the various approximations introduced at
ferent levels of description are so many that this becom
almost a subjective issue.

The very first question that we have investigated is
behavior inside the strain range where microcracks are
gressively generated, finding that its width is independen
the system size for both the harmonic spring and the
potential. This has been shown by monitoring both the str
and the cumulative density of broken bonds. Next we h
looked at the distribution of broken bonds by classifyi
them into two groups:~i! those belonging to the major clus
ter ~composed of both broken and cut bonds! that ultimately
separates the lattice into two disconnected subsets; and~ii !
those belonging to ‘‘microscopic’’ clusters generated aw
from the macroscopic fracture@19#. As a result, we find a
different scaling behavior for the two classes, which sugge
that in larger lattices the majority of bond breakdow
should occur out of the main crack.

Finally, we have studied the fracture scaling properti
by computing the ‘‘length’’ of the leading crack and of th
microcracks. The standard way to characterize a fractur
through the roughness exponentz, which measures the sca
ing behavior of the transverse fluctuations of the fract
surface upon changing the longitudinal scale. An alterna
approach is based on the computation of the fractal dim
sion D, which is connected toz by a simple relation that, in
two dimensions, reads asD52z. In particular, we have
tested the role of kinetic energy, by simulating an ov
damped lattice. As a result, we have found that in this c
the total number of broken bonds grows linearly with t
system size. This disappearance of fractal features indic
that the kinetic energy is very important in determining t
scaling properties. It would be desirable to verify wheth
the same holds true in other setups, where, e.g., the frac
has been grown by redetermining the stationary state e
time a single bond has been broken.

More specifically, the next section is devoted to introdu
ing the model and some of the notations. The third sect
the core of the paper, deals with a thorough investigation
the harmonic potential, with the computation of several in
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cators. In Sec. IV, we discuss the dynamics of an ov
damped lattice, while Sec. V is mainly devoted to compar
the results for the LJ potential with those for harmon
springs. Finally, in Sec. VI we discuss and summarize
implications of our analysis.

II. MODEL

The model consists of a two-dimensional triangular latt
with nearest-neighbor interactions~see Fig. 1! that break as
soon as the mutual distance becomes larger than a sui
threshold. In the bulk, the total force acting on a given at
is the sum of the contributions arising from the interacti
with its six neighbors~see the dashed lines in Fig. 1!.

More precisely, by denoting the position of thei th
‘‘atom’’ by rW i , the forcefW i j due to the interaction with the
j th particle is written as

fW i j 5F~ urW i2rW j u!
rW i2rW j

urW i2rW j u
, ~1!

where u•u represents the modulus operation andF(u) is a
scalar function defining the force law. Here, we have cons
ered both linear,F(u)52a(u2a) ~harmonic case!, and
Lennard-Jones type forces,

F~u!5
aa

6 F S a

uD 13

2S a

uD 7G , ~2!

where the parameters are fixed in such a way thatu5a is the
equilibrium position in either case~i.e., a is the lattice spac-
ing at rest!, and to guarantee that the quadratic term of the
potential coincides with the harmonic potential. In order
explicitly eliminate the irrelevant parameters, we suitab
rescale the spatial variable as well as the time axis: this
lows getting rid of botha anda, which will be fixed equal to
1 for the rest of the paper~notice that the masses can also
scaled out!. Accordingly, all the quantities studied in thi
paper are adimensional.

FIG. 1. Sketch of the triangular lattice. The dashed lines refe
the interactions involving a given site with its nearest neighbo
The left and right boundaries are pulled apart with velocityv.
Free boundary conditions are assumed along the upper and l
borders.
7-2
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The critical thresholda* , however, is a relevant param
eter that cannot be scaled out. We have performed mos
our numerical investigations fora* 51.1, but some tests fo
larger thresholds (a* 51.5,1.8) have been made as well.
the case of the LJ potential, we have fixeda* 51.8, above
the inflection point of the potential, in order to ensure a cl
qualitative difference from the harmonic case.

The pulling process is actuated horizontally, by symme
cally shifting the leftmost and rightmost lattice sites~those
connected by the solid thick lines in Fig. 1! with a velocity
6v. The velocity has been chosen small enough to guara
that the whole lattice remains nearly at equilibrium duri
the initial elastic deformation. Simulations performed w
different velocities have allowed us to conclude thatv
51024 is slow enough, so that we have selected such a v
in all our studies.

Fixed boundary conditions have been imposed along
lateral borders~i.e., we studied strain-controlled fractures!,
while free boundary conditions have been chosen along
upper and lower borders~see again Fig. 1!. This is a simple
way to reproduce the conditions imposed in some exp
ments~see, for instance,@20#!.

A local dissipation, i.e., a force term2grẆ i , has been
added along the left and right boundaries, where we exp
that the coupling with the external world is more effective
removing kinetic energy from the medium. It is, in fact, ne
essary to include some dissipation to prevent the transfor
tion of potential energy into kinetic energy due to the p
gressive bond breaking leading to an unrealistic amoun
kinetic energy traveling all over the lattice. This is a simil
choice to that made when performing numerical simulatio
of heat conductivity in lattice systems, where the only ato
coupled with the heat baths are those on the oppos
boundaries@21#. The only exception to this setup has be
made in Sec. IV where, in order to test the role of kine
energy, we added a dissipation term on all sites.

The equations of motion have been integrated by usin
leapfrog algorithm that allows preserving the Hamiltoni
structure in the bulk and easily adding the dissipation wh
ever required. The time step has been fixed equal to 1022.

The last important ingredient of the model is the disord
We have chosen to work with two types of bond: intact on
characterized by the same spring constanta51 and cut ones
characterized bya50. Accordingly, the fractionc of ini-
tially missing bonds represents an indicator of disorder.
c50 we have a perfectly homogeneous lattice. It is w
known that c5cp[0.65(3) is the ordinary percolatio
threshold, i.e., forc.cp there are so many missing bond
that the lattice is no longer macroscopically connected@22#.
Moreover, in the case of central forces, there is a sec
threshold, the so-called rigidity-percolation thresholdcr
50.3398@23#! above which the lattice, although connecte
has zero Young modulus.

Preliminary numerical studies performed to test the c
rectness of our algorithms and the reliability of the mod
have revealed, e.g., that the propagation of fractures is
rectly described with the onset of the typical velocity ins
bilities @24#.
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All simulations have been performed inL3(L11) lat-
tices, i.e., in media with aspect ratio close to 1. Before d
cussing the quantitative results in the next section, let us h
briefly illustrate the phenomenology that can be observed
some realizations of the disorder and for different choices
the interaction. For relatively small strains, the bond leng
remain below the breaking threshold. The inhomogenei
of this process are just determined by the initial distributi
of cut bonds. Above some critical strain, microfractures ar
in different regions of the lattice until the whole lattice
separated into at least two disconnected pieces by a ma
scopic fracture. A typical example is reported in Fig. 2~a!,
where a rough fracture is clearly visible together with so
small holes corresponding either to isolated microfracture
to initial clusters of missing bonds. The final structure ca
however, be more complex, as illustrated in the other pan
In Fig. 2~b!, the generation of almost macroscopic holes h
accompanied the onset of the main fracture. In Fig. 2~c!, one
can see instead that the fracture initially followed two diffe
ent routes which eventually connect after some twisti
Such a phenomenon is brought to an extremum in the
ample reported in Fig. 2~d!, where one of the two paths even
tually becomes dominant, leading to a partial overlap in
top right region. We can, in a sense, state that the stress
rotations allowed by the model make it good for reproduc
the behavior of nearly two-dimensional objects embedded
a three-dimensional space like sheets of paper. It is also c
that these strong deformations, which are responsible for
final ductile behavior, make the system rather different fro
a random fuse network, where only the connectivity is i
portant. Moreover, we want to remark that, occasiona
small fragments~composed of a few particles! detach, rap-
idly flying away, very much in analogy to what happe
when, e.g., a glass breaks in real life. This represents the
qualitative indication of the relevance of kinetic energy
the whole process.

III. HARMONIC CASE

In this section we extensively discuss the fracturing p
cess for the harmonic potential with the threshold set eq

FIG. 2. Different instances of fractures in a lattice with line
size L580: ~a! Lennard-Jones potential with 30% of initially cu
bonds;~b! harmonic potential, threshold equal to 1.1, 30% of c
bonds~simulation performed with no kinetic energy!; ~c! same as
~b! with a different realization of the disorder and with kinetic e
ergy; ~d! Lennard-Jones potential and 15% of cut bonds.
7-3
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ANTONIO POLITI AND MARIA ZEI PHYSICAL REVIEW E 63 056107
to a* 51.1 and for a fraction of broken bondsc50.3 close to
but definitely below the rigidity-percolation threshold. W
start from the stress-strain curves. The stresss is defined as
the horizontal~x! component of the force per unit length,

s5
1

L ( u f i j
(x)u, ~3!

where the sum extends to all bonds along one of the
edges where the stress is applied.

In Fig. 3 we report the stress averaged over 100 differ
realizations of the disorder as a function of the straind
5D/L ~whereD5vt is the overall stretch! for different lat-
tice sizes (L510, 20, 40, and 80!. We have verified that the
differences between the forces applied on the left and r
sides are much smaller than the statistical deviations
observable after the averaging process.

The small-strain region is characterized by a nice sca
behavior: all curves perfectly overlap along a line that de
ates significantly from a straight line behavior. In this stra
range, the statistical uncertainty is rather small~less than
1024 for all sizes!. The nonlinear behavior of the load curv
follows from the combined choice of~i! a largec value close
to the rigidity-percolation threshold, so that the entire latt
has to be quite stretched before the microscopic strains o
come the preassigned threshold and~ii ! a not-too-small criti-
cal elongation~0.1, compared, for instance, with the valu
chosen in Ref.@13#, a* 2151024). The two circumstances
combine to determine sizable lattice deformations which
turn, contribute to stronger nonlinear effects. It is interest
to notice that we are not so close to the percolation thresh
as to be affected by finite-size corrections associated with
phase transition.

The overlap appears to end at a critical straindc ~see the
vertical line in Fig. 3!, above which the onset of microcrack
leads to a rearrangement of the lattice to withstand the
posed strain and, eventually, gives rise to a decrease o
stress. This second regime characterized by the develop
of the fracture becomes shorter and shorter upon increa

FIG. 3. Stress-strain curve in lattices of different dimension w
harmonic potential, threshold equal to 1.1, and 30% of cut bon
The long-dashed, dashed, dotted, and solid lines refer toL510, 20,
40, and 80, respectively. In the inset, we report the same cu
versusD, the unscaled strain after a suitable shift@see Eq.~4! with
dc50.0368#.
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the lattice sizeL. In order to establish the scaling behavi
within what we call the fracture range, we introduce t
variable

D5~d2dc!L, ~4!

which is basically the unscaled strain (dL) shifted by an
amount proportional to the system size. The best data
lapse was obtained fordc50.0368~see the inset in Fig. 3!.
Its relatively low quality is due to both the large statistic
fluctuations and the existence of finite-size corrections.
fact, on the one hand, the maximum statistical error ons is
equal to 1.531023, 831024, 531024, and 331024 for L
510, 20, 40, and 80, respectively; on the other hand,
can see that the position of the maximum stress progressi
shifts to the left, testifying to the non-negligible role of th
finite size L. In any case, although a clear-cut conclusi
cannot be drawn, the approximate data collapse suggests
the size of the fracture range is asymptotically independ
of L.

In order to gain some further insight into the fracture pr
cess, we have looked at the dependence of the numbe
broken bondsN(d) on the strain. Again, by consideringd as
the independent variable~as it is indeed so in the numerica
experiment!, we have averaged the fraction of broken bon
for fixed d,

n~d!5
N~d!

Nb
~5!

(Nb is the final number of broken bonds in a given realiz
tion!, over the different realizations of the disorder, obtaini
^n&. Notice thatn is nothing but the cumulative distributio
of broken bonds, i.e., the integral of the probability dens
Q(D) of broken bonds. The resulting behavior is reported
Fig. 4, again as a function ofD ~only the fracture range
matters in this case!. Except for the curve corresponding t
the smallest size (L510), there is a reasonably good da
collapse: in fact, the deviations among the various curves
of the same order as the statistical uncertainty, which is
proximately 2–3 %. These results confirm in a more co
vincing way that the strain range over which the whole fra
ture develops is independent of the system size.
significant difference is found if the fraction of broken bon
is fixed and the corresponding strain is averaged over
disorder realizations.

At this point, it is interesting to compare our findings wi
the previous knowledge on this type of systems. In parti
lar, in Ref. @13#, the behavior of the critical stress values f
for the breakdown of the first bond was extensively studi
The authors convincingly conjectured thats f5(a
1b ln L)2n with 0.5<n<1. This result can be understood o
the basis of the following simple observation: the typical s
of the longest microcrack~due to the initial disorder! that can
be found in a lattice of sizeL increases~logarithmically!
with L. In particular, this is true for cuts perpendicular to t
stress direction. The longer are such cuts, the more fragi
their tip. Accordingly, it is natural to expect that the minim
stress to break the first bond decreases with increasingL.

s.

es
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We have tested this behavior in our simulations too.
sample-to-sample fluctuations of the strain turn out to
smaller than stress fluctuations, we have preferred to loo
the behavior of the critical value ofdf ~the nonperfect linear
relationship linkingd ands is not a problem in regard to th
scaling behavior, since the linear term remains predomina!.
By plotting 1/df versus lnL, we find that the scaling law
proposed in Ref.@13# holds true for this fairly largec value
also ~the largest concentration of missing bonds conside
in Ref. @13# was c50.2). Additionally, the exponentn is
more likely close to 1 than to 0.5. The above results can t
be interpreted by stating that the critical strain~or, equiva-
lently, stress! for observing a finite fraction of bond break
ings appears to remain finite even in the infiniteL limit,
while the critical strain value for observing the first bre
goes to zero. Altogether, the decrease of the critical st
with increasingL manifests itself as a tail in the underlyin
probability distributionQ(D) that extends to negativeD val-
ues and, in principle, to2` for L→`.

A similar phenomenon is observed for largeD values, i.e.,
corresponding to the final breakdown of the lattice. In t
case, as the tail is much better pronounced, we can attem
quantitative study. In Fig. 5 we report 12^n& versusD to
investigate the convergence properties of the probability
tribution. The dotted and dashed lines are the results of
avergage ofn for fixed d and vice versa. We cannot say if th
strong deviations observed for largeD are real and reflect the
sparse character of the last bond breakings, or if they are
due to a lack of statistics. In any case, with reference to
first curve, the solid line obtained with a best fit suggests
existence of an exponential tail.

Another interesting problem to be studied is the dep
dence of the total number of broken bondsNb(L) on the
lattice size, with the aim of characterizing the possible frac
nature of the process. The data reported in Fig. 6~see full
circles! reveal a rather clean power law,Nb.Lb. A best fit
yields b51.3560.03. Considering that a macroscopic fra
ture cannot be shorter than a straight line,b must be larger
than or equal to 1. It is important to understand whether
difference from 1 is to be attributed to the fractal structure
the main crack or to the distribution of microcracks. In ord

FIG. 4. Average number of broken bonds normalized to the fi
number Nb ~i.e., cumulative probability distribution of broke
bonds! as a function ofD for the same physical setup as in Fig.
Dot-dashed, dashed, dotted, and solid lines refer toL510, 20, 40,
and 80, respectively.
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to clarify this point we decided to look more carefully at th
spatial arrangement of the broken bonds. In Fig. 7~a! we
report all broken bonds corresponding to the fracture proc
depicted in Fig. 2~a!, indicating their spatial positions in th
undeformed lattice. There, one can certainly see a large
centration of broken bonds around the region where the m
roscopic fracture is eventually generated, but microcracks
distributed all over the lattice. We found it natural to grou
together cut and broken bonds into disjoint clusters of mu
ally connected bonds. The cluster ensemble obviously
cludes the major crack connecting the opposite edges of
lattice, together with a set of more or less microscopic cl
ters ~the so-called precursors!. The shape of the maxima
cluster, including the cut bonds, is reported in Fig. 7~b! for
the same realization of disorder as in Fig. 7~a!.

Altogether,Nb is much smaller than the numberNc of cut
bonds. This is not simply the consequence of our choice

l FIG. 5. Tail of the cumulative probability distribution of broke
bonds forL580. The dotted line refers to the average fraction
broken bonds for fixedd, while the dashed line is obtained b
averaging the strains that correspond to the same fraction of bro
bonds. Finally, the solid line with slope 0.3 represents the resu
an exponential best fit. The large sample-to-sample fluctuations
fecting the final stage of the fracture prevent a meaningful estim
of the statistical error.

FIG. 6. Scaling behavior of the number of broken bonds for
harmonic potential with threshold equal to 1.1 and 30% of
bonds. Full circles refer to the average total number of brok
bonds; open circles refer to the broken bonds belonging to the l
ing cluster; diamonds refer to the broken bonds out of the lead
cluster; crosses refer to the total number of broken bonds in
absence of kinetic energy.
7-5
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ANTONIO POLITI AND MARIA ZEI PHYSICAL REVIEW E 63 056107
relatively largec, but rather of the scaling behavior ofNb,
which grows asL1.35, while Nc'L2 for any c value strictly
larger than 0. However, althoughNb is, for largeL, negli-
gible in comparison toNc , the same appears not to be tr
within the maximal cluster: there, we found that the fracti
of broken bonds remains finite forL→`. This is not surpris-
ing, because, even though the fracture developed alon
optimal path characterized by the maximal fraction of c
bonds, such a fraction must be strictly smaller than 1, as l
asc remains below the percolation threshold, as here. In f
in the present case, the fraction of bonds that are bro
rather than cut in the maximal cluster is not smaller th
10%.

It is now instructive to separately investigate the scal
behavior of the numbersNb

( i ) and Nb
(o) of broken bonds in-

side and outside the maximal cluster, respectively. In Fig
one can see thatNb

( i ) scales approximately in the same w
as Nb ~see the open circles, whose best fit yieldsb51.31
60.03), but this is an almost obvious consequence of
fact thatNb

( i )@Nb
(o) ~see the diamonds for the scaling beha

ior of Nb
(o)). More interesting is the growth rate exhibited b

this latter class of bonds, which is definitely larger,b
51.5260.06. This result implies that, if the scaling behavi
remains unchanged in yet larger lattices, the majority of b
ken bonds will be eventually found out of the main cluste

It is thus important to understand how the broken bon
are distributed out of the main cluster. In particular, w
would like to ascertain whether theirL1.5 growth is due to an
increasing number of clusters, or to an increasing size o~a
subset of! clusters. This can be clarified by looking at th
probability distribution of cluster sizes. However, in order
perform a clean analysis, we have to get rid of the ba
ground composed of the cut bonds, which represent the
majority of bonds belonging to the clusters. We decided
proceed as follows. For any given cluster~identified as such
by simultaneously considering cut and broken bonds! we
count the numbers of broken bonds and define it as th
cluster size. By then counting the number of clusters of d
ferent sizes over all realizations of disorder, we are in
position to compute the probability densityP(s). One should
notice that this is different from the standard procedure u
ally adopted in the study of cluster distribution in rando

FIG. 7. Bonds broken during the fracture process with the sa
realization of disorder considered in Fig. 2~a!. In ~a!, all broken
bonds are reported with reference to the undeformed lattice. In~b!,
the whole leading cluster is reported, including broken and
bonds.
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percolation@25#. The distributions forL510, 20, 40, and 80
are reported in Fig. 8 as solid lines: they are rescaled to s
from the same valueP(1). The nice overlap indicates tha
the reason for the exponent 1.5 in the growth rate ofNb

(o) is
a homogeneous increase in the number of clusters of
sizes. Over the accessible range ofs values, the cluster-size
distribution approximately follows a power law with an e
ponent equal to22.360.1 ~see the solid line in Fig. 8!.

Finally, for the sake of comparison, we have investiga
the difference from the simple case of a random cancella
of an equal number of bonds in addition to the cut bon
The distributions obtained with this procedure correspond
the dashed lines in Fig. 8. The slower decay of this sec
group of curves~the slope is close to22) is apparently
counterintuitive: the bonds broken during the fracturing p
cess are less clustered than those in the purely random
cess. In other words, it turns out that, once a bond is bro
in a given cluster, it is less likely, rather than more likel
that further bonds will be broken in the same cluster. In fa
because of correlations in the local stress, small clus
grow by very little amounts, while only the leading cluste
the Griffith’s crack, reaches the macroscopic scale.

As a further test, one could compare these results with
screened percolation model@26#, in which case the randomly
broken bonds are removed only from the backbone. Ho
ever, no sizable differences can be expected in the reg
that we have investigated, i.e., far from the percolat
threshold.

IV. ROLE OF THE KINETIC ENERGY

In the previous section we extensively discussed so
fracture properties in a given physical setup. We now s
investigating the importance of some of the underlying
sumptions. In this section we discuss the role of kinetic
ergy in determining the scaling properties of the brok
bonds. In the past, while Newton’s equations have been
tensively used to simulate the propagation of fractures an
study the various instabilities occurring therein, they ha

e

t FIG. 8. Probability distribution of the cluster sizes of broke
bonds in the harmonic potential for different lattice sizes, resca
to the same maximum value~solid lines!. The dashed lines repre
sent the distributions that would be obtained by randomly add
broken bonds to the cut ones. The slope of the straight line is e
to 22.3.
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been less frequently employed in studying statistical prop
ties of fractures.

Many papers~see, e.g., Ref.@16#! have dealt with models
with a random distribution of thresholds, proposed as a n
ral extension of random fuse networks. By interpreting th
as mesoscopic models, the role of dynamics has been
duced to guaranteeing an exponential convergence tow
the instantaneous equilibrium configuration for the impos
~slowly varying! boundary conditions and the given set
mutual connections. A nontrivial evolution arises becau
upon increasing either the stress or the strain, some l
strains progressively overcome the allowed thresholds,
imposing a continuous reequilibration of the system until
final breakdown is established.

In some other cases, intrinsic and extrinsic fluctuatio
have been included through the introduction of a stocha
rule @27–30#: in analogy to numerical studies of diffusion
limited aggregation, where particles are randomly added
the growing cluster, there, bonds have been randomly ad
to an initial crack with a suitable probability distribution.

In the present context, where the dissipation is acting o
along the boundaries, it is not at all unlikely that the poten
energy released from the breakdown of a given bond allo
breaking further bonds, upon transforming itself into kine
energy. It is much less obvious whether the number of b
ken bonds either increases or decreases. Indeed, on the
hand, we can predict that the kinetic energy facilitates
bond breaking along the leading crack, thereby reducing
stress on the bonds away from the critical region. If this
the scenario, the overall number of broken bonds should
minish. On the other hand, kinetic energy, transpor
through the lattice, might contribute to breaking all bon
that are nearly at threshold.

In order to find the true scenario, we have added a str
dissipation on each lattice site. The average number~again
more than 100 different realizations of disorder! of broken
bonds is reported in Fig. 6~see the crosses! for the sameL
values as before. There, one can see that both of the a
hypothesized mechanisms occur, since for smallL Nb is
larger than in the previous case, while the opposite is true
large L values. Altogether, this implies thatNb increases
more slowly in the case of an overdamped motion. A bes
of the data in Fig. 6 yields an exponentb51.0460.05.
Within our accuracy, the growth is thus indistinguishab
from a linear behavior~i.e., no fractality in the fracture pro
cess!. While this is a clear indication that in the present co
text kinetic energy plays a crucial role in determining t
scaling behavior of broken bonds, we should mention tha
models with a random distribution of thresholds, frac
cracks are obtained even in the presence of overdamped
namics@16,28#. This, however, does not exclude the pos
bility that even in such conditions different fractal dime
sions might be obtained upon including the effect of kine
energy.

Finally, let us comment on another element of agreem
with previous studies. In Ref.@15#, it was found that, when-
ever the distribution of thresholds was limited to a range
strictly positive values, nonfractal behavior for the fractu
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was observed. This is consistent with our findings, as
dynamical rule was based on a~potential! energy minimiza-
tion.

V. FURTHER TESTS

Besides the extensive studies performed forc50.3, we
have made some tests for a smaller density of cut bondc
50.15), finding: stronger finite-size corrections, larger sta
tical fluctuations, and a smaller breaking range. The lar
fluctuations are due to the smaller absolute number of
bonds. Since, qualitatively speaking, we have not found s
nificant differences, we have preferred to concentrate
efforts on the study of a single density of defects that co
presumably allow more reliable results. For all the abo
reasons, the larger densityc50.3 was found to be more con
venient.

The only quantitative analysis we attempted for smallec
concerns the scaling behavior ofNb , for which we found ab
value approximately equal to 1.27, i.e., smaller than in
previous case. This result is not suprising, as it is known t
upon reducing the number of defects the fracture proc
becomes more localized.

Another parameter that we have modified is the thresh
Upon increasing it from 1.1 to 1.5~i.e., by increasing the
critical displacement by a factor of 5!, we find that the criti-
cal strain passed from 0.0368 to 0.15, a value ‘‘only’’ fo
times larger: this is an indirect confirmation that nonline
effects due to the lattice deformation are not negligible. A
the threshold changes yield to larger finite-size effects, wh
induced us to prefer the value 1.1 considered in the previ
sections.

Finally, we replaced the harmonic potential with the mo
realistic nonlinear LJ potential. It is obvious that if th
threshold distance is chosen too small we are back to
harmonic case, as the nonlinearity plays no role. For
reason, the threshold has been set equal to a larger v
namely, d51.8, above the inflection point, in the rang
where an increase of the deformation reduces the stress.
most detailed analysis was again performed forc50.3 in
order to allow a meaningful comparison with the previo
studies. The scenario emerging from Fig. 9, where the str
strain curves are reported, is very reminiscent of that
served in Fig. 3. A surprising difference is that the initi
behavior is more linear in this case than in the previous o
This is presumably due to a partial cancellation of the n
linear effects following from the lattice deformation wit
those due to the interaction rule.

In spite of the larger threshold, the critical stress value
smaller than in the harmonic case. This is because the e
of the larger threshold is overcompensated by the stress
duction above the inflection point of the potential. On t
other hand, the critical displacement (dc50.0318) is close to
the value found with harmonic springs. Moreover, the in
of Fig. 9 reveals a good overlap of the strain curves plot
versusD ~in this case, the statistical uncertainty is appro
mately 1023, 531024, 331024, and 231024 for L510,
20, 40, and 80, respectively! with the major exception of the
data for the smallest lattice size (L510). Therefore, the frac-
ture range again appears to remain finite in the thermo
7-7
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namic limit. This is completely confirmed by the plot in Fi
10 of the integrated density of broken bonds, where one
again see a good overlap of the curves correspondingL
520, 40, and 80~in this case, the statistical error is slight
larger than before, being approximately of the order of 3
%!. The only region where the overlap is not equally good
the interval of negativeD ’s, i.e., the initial part of the frac-
ture. In the absence of theoretical arguments, we canno
cide whether this is due to larger finite-size corrections o
a cross over toward a different regime. In either case, s
deviations do not contradict the hypothesis of a finite fract
range forL→` but might rather suggest the opposite.

The only apparently relevant difference that we ha
found from the harmonic potential concerns the tail of t
probability distributionQ(D). From the data reported in Fig
11, a power law seems to be more appropriate for describ
the asymptotic behavior ofQ(D). The power law means tha
larger strains can be sustained by the lattice before its fi
breakdown. This qualitative difference is likely to be attri
utable to the above mentioned nonlinear behavior of the
force field.

Finally, the growth rateb of Nb is slightly smaller than
for harmonic springs,b51.2760.03, and the same is tru
for the growth rate ofNb

(o)(b51.4460.04). Such differences

FIG. 9. Stress-strain curves reported as in Fig. 3, with refere
to the Lennard-Jones potential. The critical strain here isdc

50.0318.

FIG. 10. The integrated probability distribution of broken bon
reported as in Fig. 5, with reference to the Lennard-Jones pote
and with the same value of the critical straindc adopted in the
previous figure.
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are suggestive of a continous dependence ofb on c but are
also compatible with different finite-size corrections.

VI. DISCUSSION AND SUMMARY

In this paper we have investigated several aspects of
onset of fractures in a two-dimensional model of a hetero
neous material in strain-controlled conditions. One of t
questions that we considered concerns the probability di
bution of broken bonds as a function of the applied stra
We found evidence that both in harmonic springs and in
Lennard-Jones potential the probability distributionQ(D)
converges toward a smooth function for a suitable choice
the critical valuedc @see Eq.~4!#. We find thatQ(D) devel-
ops an infinite tail on both the left and right sides. The l
tail arises because the global strain corresponding to the
breakdown grows more slowly than linearly with the latti
size L @13#. Conversely, the right tail signals a faster-tha
linear growth of the strain corresponding to the final brea
down. It is now highly desirable to develop even appro
mate but analytical arguments to establish the shape
Q(D).

As a further subject, we looked at the scaling behavior
the number of broken bonds, by grouping them into disjo
clusters. As a result, we found that, besides the major clus
there exists an ensemble of microcracks that contains a s
fraction of the overall number of broken bonds but, nev
theless, exhibits a faster growth rate. On the basis of
simulations, we predict that in sufficiently large lattices t
opposite should be true, i.e., the majority of broken bon
should, in the thermodynamic limit, be found out of the m
jor crack. It would be nice to see whether some crosso
toward a different regime comes into play in larger lattice

Finally, we want to comment on the fractal character e
hibited by the major cluster. Various experimental stud
performed in the last decade on different types of mate
have revealed the existence of two scaling regimes@3#: over
small length scalesz'0.5 ~i.e., D51.5) while over some-
what larger scalesz'0.8 (D51.2). These two regimes

e

ial

FIG. 11. Tail of the integrated probability distribution of broke
bonds forL580: the dotted curve refers to the average fraction
fixed strain, while the dashed line refers to the average strain
fixed fraction of broken bonds. The slope of the straight line res
ing from a power-law best fit is equal to 1.8. As for Fig. 5, we a
unable to provide convincing estimates of the statistical error.
7-8
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seem to correspond to two different processes: the crea
of distributed small areas of damage and the subseq
growth of the fracture path through the connection of su
areas in a self-determined region of the sample. Additiona
the crossover between the two regimes appears to be
nected with the existence of different fracture velocities. O
results qualitatively confirm such a scenario. In fact, forc
50.3, the growth rateb of broken bonds in the main crack
1.31 and 1.27 in the harmonic and LJ potentials, resp
tively. Such values are slightly larger than the fractal dime
sion expected from the experimental results (D51.2), but
the difference can very well be attributed to finite-size c
rections. Indeed, upon decreasingc, smallerb values were
observed and it is altogether unlikely that the dimensionD
depends continuously on the concentration of defects. Ag
simulations with larger lattices could help in clarifying th
point, but, more than that, theoretical insight is needed
make further progress.

Furthermore, it is very tempting to compare the grow
rate of the microcracks out of the main cluster with the e
ur

,

n-

J.

s.

B:

s

H
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ponent experimentally measured to characterize the frac
roughness over microscopic length scales. In this case, t
is even an almost quantitative agreement, as we find 1.52
1.44 ~in the harmonic and LJ potentials, respectively!, to be
compared with the experimental 1.5.

We can thus conclude that the model discussed in
paper appears to be sufficiently accurate to capture som
the relevant features that have been observed in fracture
real systems. It is now compelling both to modify the set
to allow further quantitative tests~see, for instance, the sta
tistical analysis performed in Ref.@11# in the context of
stress-controlled rather than strain-controlled fractures! and
to start developing even approximate analytical argument
put our results on firmer ground.
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